C. Gadal, M. Mercier and L. Lacaze
Institut de Mécanique des Fluides de Toulouse (IMFT), France
\[ \mathcal{F}_{r} = f(?), \, \tau = f(?)\]
Parameter space:
Dimensionless control parameters:
Parameter space:
Dimensionless control parameters:
\(\mathcal{F}_{r} = f(\mathcal{R}_{e}, \mathcal{S}, \theta)\)
\(\require{cancel} \mathcal{F}_{r} = f(\xcancel{\mathcal{R}_{e}}, \mathcal{S}, \theta)\)
\(\require{cancel} \mathcal{F}_{r} = f(\xcancel{\mathcal{R}_{e}}, \xcancel{\mathcal{S}}, \theta)\)
\(\require{cancel} \mathcal{F}_{r} = f(\xcancel{\mathcal{R}_{e}}, \xcancel{\mathcal{S}}, \color{orange}{\theta})\)
\(\bullet\) Global increasing trend, but scatter across datasets \(\rightarrow\) influence of other parameters ? \(h_{0}/L_{0}\) ?
\(\bullet\) \(\theta=7^\circ\), \(\mathcal{R}_{e} \simeq 6{\times}10^{4}\)
\(d \sim 60~\mu\)m, \(\mathcal{S} = 0.01\)
\(d \sim 135~\mu\)m, \(\mathcal{S} = 0.04\)
\(d \sim 250~\mu\)m
\(\mathcal{S} = 0.1\)
\(\require{cancel} \tau = f(\xcancel{\mathcal{R}_{e}}, \mathcal{S}, \theta)\)
\(\require{cancel} \tau = f(\xcancel{\mathcal{R}_{e}},\color{orange}{\mathcal{S}}, \theta)\)
\(\bullet\) settling dominated: \(\tau \propto (\mathcal{S}/a)^{-1} \iff t_{\rm end} \propto h_{0}/v_{\rm s}\)
\(\require{cancel}\tau = f(\xcancel{\mathcal{R}_{e}}, \color{orange}{\mathcal{S}}, \theta\rightarrow?)\)
\(\bullet\) settling dominated: \(\tau \propto (\mathcal{S}/a)^{-1} \iff t_{\rm end} \propto h_{0}/v_{\rm s}\)
Entrainment coefficient, \(E = \displaystyle\frac{w_{\rm e}}{U}\)
Slumping regime:
More in: Slumping regime in lock-release turbidity currents. Gadal et al. 2023, in review in JFM. preprint:arXiv2301.00192
What’s next ?