Cyril Gadal
Institut de Mécanique des Fluides de Toulouse (IMFT), France
PhD on sand dunes (IPGP/PMMH, 2017–2020)
PhD on sand dunes (IPGP/PMMH, 2017–2020)
PostDoc on turbidity currents (IMFT, 2021–2022)
PhD on sand dunes (IPGP/PMMH, 2017–2020)
PostDoc on turbidity currents (IMFT, 2021–2022)
PostDoc on the cloggind of riverbeds (IMFT, 2023)
PhD on sand dunes (IPGP/PMMH, 2017–2020)
PostDoc on turbidity currents (IMFT, 2021–2022)
PostDoc on the cloggind of riverbeds (IMFT, 2023)
PostDoc on the self-organization of cohesive granular flows (Manchester)
PhD on sand dunes (IPGP/PMMH, 2017–2020)
PostDoc on turbidity currents (IMFT, 2021–2022)
PostDoc on the cloggind of riverbeds (IMFT, 2023)
PostDoc on the self-organization of cohesive granular flows (Manchester)
Almost always destructive natural hazards.
\(\rightarrow\) determination of relevant processes and corresponding parameterization
But in-situ measurements are difficult !!!
Using \(x_{\rm f}(t)\) and \(h(x, t)\) as proxy for the current morphodynamics
Slumping (constant-velocity) regime
Slumping (constant-velocity) regime
Horizontal tank, homogenous fluid or particle but low volume fraction/small settling !
Now what happens in more complex systems ?
\(+\) two-fluids simulations (SedFoam)
Julien Chauchat, Cyrille Bonamy
Experimental parameters:
Interstitial fluid density \(\rho_{\rm f}\)
Ambient fluid density \(\rho_{\rm a}\)
Volume fraction \(\phi\)
Particle diameter \(d\)
\(\rightarrow \rho_{0} = \phi \rho_{p} + (1-\phi \rho_{\rm f})\)
Dimensionless numbers as control parameters:
Slope \(\alpha\)
Aspect ratio \(a = \displaystyle\frac{h_{0}}{l_{0}}\)
Reynolds number \(\mathcal{R}e = \displaystyle\frac{u_{0}h_{0}}{\nu}\)
Volume fraction \(\phi\)
Stokes number \(\mathcal{S}t = \displaystyle\frac{v_{\rm s}}{u_{0}}\frac{l_{0}}{h_{0}}\)
Atwood number \(\require{cancel} \xcancel{\mathcal{A}t = \displaystyle\frac{\rho_{0} - \rho_{a}}{\rho_{a}}}\) \(\rightarrow\) Boussinesq approx.
Scales:
Dimensionless observables:
\(\displaystyle\frac{x_{\rm f}}{l_{0}} = \mathcal{F}r\left[\displaystyle\frac{t}{t_{0}} - \displaystyle\frac{1}{\tau}\left(\displaystyle\frac{t}{t_{0}}\right)^{2} +\,...\right]\)
\(\displaystyle\frac{x_{\rm f}}{l_{0}} = \color{orange}{\mathcal{F}r}\left[\displaystyle\frac{t}{t_{0}} - \displaystyle\frac{1}{\color{orange}{\tau}}\left(\displaystyle\frac{t}{t_{0}}\right)^{2} +\,...\right]\)
\(\bullet\) PMMA particles, \(\phi \sim 1~\%\)
\(\alpha = 0^\circ\)
\(\alpha = 45^\circ\)
Slumping dimensionless velocity increase with slope !
A first interpretation: slope-induced acceleration increases velocity
But
Issue 1: constant velocity \(\leftrightarrow\) equilibrium (inertia / pressure gradient)
Issue 2: slope-induced acceleration takes a time \(t_{\theta} \sim 4\displaystyle\frac{t_{0}}{\sin\theta}\) to be significant (Birman et al. 2007), so usually \(t_{\theta} \gg \tau t_{0}\)
Hypothesis (unverified): slope acts during the early transient regime
An energetic balance between the initial state and the end of the transient phase:
\[ \underbrace{C \Delta\rho g \cos\alpha h_{0}}_{\textrm{initial}} -\underbrace{\left[\frac{1}{2}\rho_{0}u_{\text c}^{2} + A \Delta\rho g \cos\alpha h_{0} - B \Delta\rho g \sin\alpha L\right]}_{\textrm{final}} = \underbrace{\frac{1}{2}c_{\text d}\rho_{0}u_{\text c}^{2} \frac{L}{h_{0}}}_{\textrm{dissipation}} \]
\[ \mathcal{F}r = \frac{u_{\text c}}{u_0} = \frac{Fr_0}{\sqrt{1 + C_{\text D}}} \sqrt{1 + \frac{\tan\alpha}{S}} \]
\[ \mathcal{F}r = \frac{u_{\text c}}{u_0} = \frac{\color{orange}{Fr_0}}{\sqrt{1 + \color{orange}{C_{\text D}}}} \sqrt{1 + \frac{\tan\alpha}{\color{orange}{S}}} \]
Slumping dimensionless velocity decreases with \(\phi\) !
A first interpretation: particle-induced dissipation decreases velocity
But
Issue 1: constant velocity \(\rightarrow\) equilibrium (inertia / pressure gradient)
Issue 2: dissipation takes a time \(t_{\nu}/t_{0} \gg \tau\) (Huppert & Simpson 1980, Bonnecaze et al. 1993)
Hypothesis (unverified): dissipation acts during the early transient regime
An energetic balance between the initial state and the end of the transient phase:
\(\underbrace{C \Delta\rho g \cos\alpha h_{0}}_{\textrm{initial}} -\underbrace{\left[\frac{1}{2}\rho_{0}u_{\text c}^{2} + A \Delta\rho g \cos\alpha h_{0} - B \Delta\rho g \sin\alpha L\right]}_{\textrm{final}} = \underbrace{\frac{1}{2}c_{\text d}\rho_{0}u_{\text c}^{2} \frac{L}{h_{0}}}_{\textrm{dissipation}}\)
\(c_{\rm d} \equiv c_{\text d}\left(1 + \frac{E}{\mathcal{R}e}\frac{u_0}{u_{\text c}}\frac{\eta_{\text eff}}{\eta_{\text f}} \right)\), \(\eta_{\rm eff}(\phi)\) effective viscosity (i.e Krieger & Dougherty 1959, Boyer et al. 2011, …)
\[ \mathcal{F}r = \frac{1}{1 + C_{\text D}} \left[-\frac{Re_{\text c}}{\mathcal{R}e}\frac{\eta_{\text eff}}{\eta_{\text f}} +\sqrt{\left(\frac{Re_{\text c}}{\mathcal{R}e}\frac{\eta_{\text eff}}{\eta_{\text f}} \right)^{2} + Fr_0^{2} \left(1 + \left[1 + C_{\text D}\right]\frac{\tan\alpha}{S} \right)} \right] \]
\[ \mathcal{F}r = \frac{1}{1 + C_{\text D}} \left[-\frac{\color{orange}{Re_{\text c}}}{\mathcal{R}e}\frac{\eta_{\text eff}}{\eta_{\text f}} +\sqrt{\left(\frac{\color{orange}{Re_{\text c}}}{\mathcal{R}e}\frac{\eta_{\text eff}}{\eta_{\text f}} \right)^{2} + Fr_0^{2} \left(1 + \left[1 + C_{\text D}\right]\frac{\tan\alpha}{S} \right)} \right] \]
\(\bullet\) \(\theta=7^\circ\), \(\mathcal{R}_{e} \simeq 6{\times}10^{4}\)
\(d \sim 60~\mu\)m, \(\mathcal{S} = 0.01\)
\(d \sim 135~\mu\)m, \(\mathcal{S} = 0.04\)
\(d \sim 250~\mu\)m, \(\mathcal{S} = 0.1\)
Slumping velocity \(\mathcal{F}r\) increases with \(\alpha\)
Slumping velocity \(\mathcal{F}r\) decreases with \(\phi\)
For \(\mathcal{S}t > 10^{-2}\), slumping duration \(\tau \propto \mathcal{S}t^{-1}\)
\(\rightarrow\) Use of steady influx set-ups !